shoppingcart freetrial contact
Live Chat
Case Studies
Hospital Clinic Barcelona
Product: @RISK
Application: Blood Screening
Katherinenhospital Stuttgart
Institute for Pathology

Product: NeuralTools
Application: Medical Diagnosis
Richmond Hospital System
Product: NeuralTools, StatTools
Application: Forecasting Patient Load
Royal Veterinary College
Product: @RISK
Application: Disease Prevention

In Finance:
London Business School /
Novartis Pharmaceutical

Product: @RISK, PrecisionTree, RISKOptimizer, DecisionTools Suite
Application: Portfolio Planning
Product: @RISK, BestFit
Application: Value-at-Risk Exchange Rate
In Government:
@RISK Helps Set Budgets
for Social Service

Product: @RISK
Application: Budget Projection

NeuralTools Used for
Tumor Diagnosis

Researchers at the Katharinenhospital in Stuttgart, Germany use advanced data analysis tools to diagnose tumors. Dr. José R. Iglesias-Rozas, Associate Professor at the Universität Tübingen and researcher at the Laboratory of Neuropathology in the Institute for Pathology at Katharinenhospital, is using Palisade NeuralTools for histological classification and grading of tumors. Histological classification of tumors is based on microscopic study of the tissue. Tumor grading is a very important aspect of diagnosis since the treatment and outcome of each case depends greatly on the assigned grade.

Neural Networks Provides the Answer
Quantitative diagnostic assessments in histopathology (microscopic changes in diseased tissue) must frequently deal with uncertain information and vague linguistic terms. Final decisions are rarely based on the evaluation of a single diagnostic clue; rather, multiple pieces of evidence are routinely observed, and the certainty of combined evidence supports the final diagnosis. Neural networks analysis, which intelligently predicts outcomes based on multiple pieces of input data, is a natural fit for such medical diagnosis applications.

The Tumor Diagnosis Study
The aim of Dr. Iglesias-Rozas’s study was to predict the degree of malignancy of tumors based on ten discrete characteristics in 786 patients. Histological sections of 786 different human brain tumors were collected. Ten histological characteristics were assessed in each case, describing the presence of a specific histological feature on a scale of zero to three, with zero being the absence of the feature, and three meaning abundant presence of the feature. NeuralTools was then used to predict a malignity coefficient between 1.00 and 4.00.

NeuralTools Predicts the Result
629 tumors were available for the NeuralTools training set, and 157 independent cases were used as the NeuralTools test set. NeuralTools accurately predicted 98.58 % of the training set cases and 95 % of the testing set cases!

According to Dr. Iglesias-Rozas, “I am delighted with the program for its speed and the easy handling. I was very happy to work with numeric and category variables.” He adds: "The program is super quick".

What’s next for NeuralTools and the study? Dr. Iglesias-Rozas explains, “We have over 30 years of data and more than 8000 patients with different brain tumors to assess next.”

» NeuralTools
» Katharinenhospital Stuttgart
» Dr. José R. Iglesias-Rozas’ website

Palisade Corporation
798 Cascadilla Street
Ithaca, NY 14850-3239
800 432 RISK (US/Can)
+1 607 277 8000
+1 607 277 8001 fax
Palisade Europe
+44 1895 425050

Palisade Asia-Pacific Pty Limited
+61 2 9929 9799
Palisade Latinoamérica
+1 607 277 8000